環境材料科学研究室 畔田 重宏 指導教官 佐藤 一則

1.背景

世界的なエネルギー消費量の増加に伴い、人口 の多い都市部を中心に大気汚染問題や、さらに広 域的な温室効果ガスによる地球温暖化などの様々 な環境問題が地球規模で発生している。特に、二 酸化炭素(炭酸ガス)は大気中における拡散によ って地球全体に広がることになり、地球温暖化の 主要因となっている。従って、石油、石炭、天然 ガスといった化石燃料をそのまま燃焼させ、そこ で生じた高温度の蒸気やガスの運動エネルギーを 利用してタービンを回し、発電機にエネルギーを 与える現行の物理的変換手段の見直しが迫られて いる。現在、日本における二酸化炭素の総排出量 は年間約2.5億トンと推定されており、このうち の約3割が発電により排出されている。エネルギ ー供給における電力の比重は大きく、今後さらに 需要が増すと考えられる。そのため電力供給に焦 点を置いた環境調和型社会を構成するために、化 石燃料に取って代わる燃料源であり、クリーンか つ安全、現状のエネルギー供給基盤に柔和に対応 可能したシステムが必要となる。

燃料電池 (Fuel cell) はこれらの問題をクリア することが可能な発電システムである。天然ガス、 メタノールなどの燃料を酸化剤と電気化学的に反 応させることによって化学エネルギーを直接電気 エネルギーに変換することができる。発電効率が 約50%と高いうえ、単位重量当たりの電気出力も 他の電池に比べて大きく無公害発電が可能となる。 電気自動車の電源や、宇宙船用、海洋開発用、電 カ貯蔵用等の電源として、その期待は大きい【1】。 固体酸化物型燃料電池(SOFC)は、現在、実用段 階レベルにほぼ到達しているリン酸型燃料電池以 上の高い発電効率が期待され、開発が進められてい る。図1にSOFC概略図を示した。

図1 SOFC 概略図

現在の SOFC は作動温度が約 1000 と高温のため、 電力への変換効率が高く、電池システムが簡単であ る。また、SOFC は原理的に燃料の内部での水蒸気 による改質が可能であり、炭化水素燃料も直接利用 が可能である。しかしその高温作動温度のため、構 成材料の制約、炭素析出による性能低下といった問 題が生じる。本研究ではまず電解質を検討した。 CeO₂ に希土類金属酸化物 Sm₂O₃ が固溶した Ce_{0.8}Sm_{0.2}O_{1.9}(<u>Samaria Doped C</u>eria : SDC)は酸化物 イオン導電率が高いことが知られている【2】。しか し、高温において酸素分圧が低くなると、セリウム イオンの一部が還元され、結合酸素の一部が欠損し、 Ce⁴⁺から Ce³⁺に変わり、CeO_{2? ×}になる。そのため に電子伝導性も発現する【3】。SOFC は電解質にイ ットリア安定化ジルコニア(Y₂O₃-ZrO₂ 系固溶体 <u>Y</u>ttria <u>S</u>tabilized <u>Z</u>irconia : YSZ)を使用することが主 流となっている。そのYSZ、SDC の導電率と温度の 関係を図2に示した。

図2 導電率と温度の関係

SDC は YSZ より約1桁高い酸化物イオン導電率、 高温還元雰囲気では電子伝導性が発現するが、低温 でも十分な酸化物イオン導電率を持つことから、そ の電解質使用による SOFC 作動温度の低温化が期 待される。燃料にはメタノール(CH₃OH)に着目し た。低温でも燃焼しやすく、SDC と組み合わせるこ とによるメタノール燃料の直接利用は、作動温度の 低温化からみて非常に有望である。

燃料電池の理論起電力 (*E⁰*) は、次の式で表される。

$$E^0 = ? \qquad G^0 / nF \tag{1}$$

 G^0 : ギブスの自由エネルギー変化 (J・mol^{? 1})

n:反応に関与する電子数

F:ファラデー定数(9.64853×10⁴ C・mol^{? 1})
実際の燃料電池では、電池の内部抵抗、反応抵抗等
により、理論起電力よりも低い値で作動する。測定
される電池電位を *E* とすると、

 $E = E^{0}$? *i*R? ($_{a}+_{c}$) (2) *i*R: 材料中を O^{2?} が透過する時の抵抗(材料抵抗) *i*R = *i*R_e + *i*R_a + *i*R_c + *i*R_s (3)

 $(i: 電流 R_e: 電解質抵抗 R_a: 燃料極材料抵抗$

R_c: 空気極材料抵抗 R_s: 導線等の抵抗) a: アノード反応抵抗によって生じる過電圧 c: カソード反応抵抗によって生じる過電圧 iR_eは電解質中のイオン伝導度、電解質の厚さによっ て決まる。 a、 cは、電極/電解質界面での電極反 応による抵抗によって生じる過電圧であり、アノー ド/電解質界面での燃料ガスの電気化学的燃焼過程、 カソード/電解質界面での酸素還元反応過程に起因 する。電極反応が速く進行する電極が良い電池であ る。 SOFC において、電極反応抵抗の要因を解析 し、性能向上のためにこの抵抗を低減させることが 大きな目的となっている。図3に電流と電位の関係 を示した。

図3 電流と電位の関係

過電圧は端子電圧降下に非常に大きく寄与して いる。そこで本研究では、メタノールに対するSDC 電解質の SOFC 特性を明らかにすることを目的と し、このために、発電ロスの主要因となるアノード) およびカソードのそれぞれの反応抵抗によって生 じる過電圧 a、 。を直流分極測定法により解析、 把握し、電極反応機構の解明、および過電圧低減化 を試みることにし、メタノール燃料直接利用の可能 性を検討した。

2.実験方法

SDC ディスク (直径:16 mm 厚さ:190 µm)を 電解質として使用し、表 1 に示した電極を焼き付け た。

	表1 電極材料
アノード	: Ni
カソード	: La _{0.6} Sr _{0.4} MnO ₃ (LSM) : La _{0.6} Sr _{0.4} CoO ₃ (LSC) : Sm _{0.5} Sr _{0.5} CoO ₃ (SSC)

アノードは NiO に 20 wt %SDC を加えサーメット にし、1350 、10 h焼き付けた。カソードは各種 ペロブスカイト型酸化物を使用し、30 wt%SDC を 加え、1200 、5h焼き付けた。両電極面に参照極 も焼き付けた。アノードガスは 35 の飽和メタノ ール蒸気に He をキャリアガスとして流した。カソ ードガスは酸素を流した。550 ? 700 の間で電 流? 電圧(I-V)測定と過電圧測定を行った。過電 圧測定には図4に示した直流分極測定法を使用した。 作用極? 対極間にパルスを流し、参照極に対する各 電極の電位変化をオシロスコープにより観察した。

図 4 直流分極測定法結線図

3.結果および考察

カソード材料の評価

図 5 に、各種カソード材料における過電圧測定結 果を示した。SSC が最も低く、LSC、LSMの順に高 くなった。カソード過電圧低減には酸素還元反応、 O₂ 2O^{2?} +4e[?] (4) の反応促進がポイントとなる。三相界面において、 電極上での酸素拡散、電極内への酸素移動が重要で

ある。LaCoO₃系酸化物はLaMnO₃系酸化物と比較し て酸素拡散係数(D^{*})が大きく、表面交換反応速度 定数(k_s)が高い【4】。このことにより酸素還元反 応の促進、特にSSC使用による過電圧低減化がされ たと考察される。

図5 各種カソード材料過電圧比較

メタノール燃料の評価

図6に、メタノールと水素燃料におけるI-V測定 結果を示した。水素に比較して、メタノールは20% ほど放電性能が低下した。また、そのときの過電圧 測定結果を図7に示した。メタノールは過電圧が高 くなった。図8に、その他の燃料における過電圧測 定結果を示した。一酸化炭素+水素の混合ガスは、 メタノールとほぼ等しい結果となり、一酸化炭素の みでは、過電圧が最も高くなった。

Current Densily, mA • cm²

図6 I-V 測定結果(メタノール、水素比較)

図7 過電圧測定結果(メタノール、水素比較)

図8 過電圧測定結果(その他燃料比較)

過電圧測定より、アレニウスプロットおよび活性化

エネルギーを算出(以下に記す)評価した。

SOFC において、反応場である電解質/電極/ガス の三相界面において電荷移動が起こる。この電荷移 動に伴い、固体電解質/電極に過電圧が発生するた め、電池回路に流れる電流密度 I は、以下の Butler-Volmerの関係式で与えられる。

 $I=I_0[exp(F/RT)? exp(?F/RT)] (5)$

:アノードにおける経験的反応移動係数

: カソードにおける経験的反応移動係数

 $I_0: 交換電流密度$

R: 気体定数(8.314 J・mol・K^{?1})

T:温度(K)

F:ファラデー定数(9.64853×10⁴ C・mol^{? 1})
交換電流密度は過電圧が0の平衡状態におけるア
ノード電流(I_a)、カソード電流(I_c)値に相当する。

$$I_0 = I_a + I_c \tag{6}$$

が低い値の場合、すなわち F RT では、指数項 を展開でき、以下の関係式が得られる。

$$I=I_0 (+)F /RT$$
 (7)

分極抵抗 R_{p} = /I と定義すると次の関係が得られる。

$$I_0 (+) = RT/(R_pF)$$
 (8)

横軸に温度の逆数(1/T) 縦軸に分極抵抗の逆数 (R_p^{-1})をとったアレニウスプロット(Arrenius plot) により、その傾き[$\log R_p^{-1}/(1/T)$]から反応活性化エネ ルギー(Q)が導かれる【2】

$$R_p^{-l} = A e^{-Q / RT} \tag{9}$$

A:頻度因子

 $Q = ? 2.303R \cdot [\log R_p^{-1} / (1/T)]$ (10) 分極抵抗の逆数 ($R_p^{-1} = I /$)は、電流値に比例し た値であり、反応がより進行するほど電流値は大き くなることから、反応速度に比例する物理量である。 頻度因子 (A)、つまり反応の起こる確率が高いほど 分極抵抗の逆数 ($R_p^{-1} = I /$)も高くなる。従って、 本アレニウスプロットの縦軸は電解質/電極界面に おける電荷移動度に比例するパラメータとして評価できる。分極測定より、アレニウスプロットを作成、また活性化エネルギーを(10)式より算出した。図9に、メタノールと水素燃料における分極抵抗のアレニウスプロットを、図10に、その他の燃料における分極抵抗のアレニウスプロットを示した。

水素、メタノール、一酸化炭素+水素の混合ガスは 活性化エネルギーがほぼ等しい結果となった。この ことより、メタノール燃料時におけるアノード反応 は水素酸化反応

$$H_2 + O^{2-} H_2 O + 2e^{?}$$
 (11)

に依存していると考察される。

また、一酸化炭素は最も活性化エネルギーが高い 結果となった。

図 11 に、メタノール燃料における反応生成ガス 分析結果を示した。

図11 生成ガス分析結果

閉回路時、セルに導入されたメタノールは、ほぼ2: 1の割合で水素と一酸化炭素に分解していることが わかった。また、電流を取り出していくと、徐々に 生成水素、一酸化炭素量は増加し、少量の二酸化炭 素も生成していることがわかった。

Ni表面において、メタノールは脱水素反応を起こし、メトキシ基を生成する。

CH₃OH_{ad} CH₃O_{ad}+H_{ad} (12) 順次、水素原子が引き抜かれ、水素原子と一酸化炭 素を生成する。

$$CH_3OH_{ad}$$
 $4H_{ad}+CO_{ad}$ (13)

生成した水素原子の電子が Ni の d 電子準位の空席 に作用し、活性化吸着、優先的に水素酸化反応が起 こり、メタノール燃料の酸化が進行する。

電解質/ガス三相界面における反応サイトを奪うこ とになる。一酸化炭素生成により過電圧が増加した と考えられる。メタノール燃料時、部分酸化反応、

CH₃OH_{ad}+O^{2?} H_{2ad}+H₂O_{ad}+CO_{ad}+2e[?] (15) が優先的に進行していると考察される。また、生成 水蒸気による改質反応、

CH₃OH+H₂O 3H₂+CO (16) により、生成水素が飛躍的に増加したと推測される。 図 12 に、メタノールの各種反応における温度と平 衡定数の関係を示した。いずれの反応も 500 から 700 の温度範囲では起こりうる。完全酸化反応に 移行させることも十分可能である。

図 12 温度と平衡定数の関係 (メタノール各種反応)

4. 結論

・アノードに供給したメタノールは電極表面におい て吸着分子となり、解離・表面反応により一酸化炭 素と水素が生成する。アノードにおける電荷移行反 応では、生成水素が電解質から供給される酸化物イ オンと優先的に反応することを、分極抵抗の温度依 存性から得たアレニウスプロットおよび活性化エ ネルギーから示した。

・生成一酸化炭素による電極・電解質・反応ガスの 三相界面近傍での強吸着が過電圧増加の原因であ ることを明らかにした。

・アノードにおける主反応はメタノール部分酸化反応であり、生成一酸化炭素による電極表面の被毒が 生成水素の酸化促進を妨げることが明らかとなった。

・カソード物質として、酸素拡散係数および表面交換反応速度定数がそれぞれ大であるSrCoO3系酸化物が、酸素還元反応を促進、過電圧の低減化をもたらすことが明らかとなった。

以上の結果から、メタノール燃料のSOFC におけ る直接利用において、SDC は電解質として十分可能 であり、電極における反応速度促進が性能の向上に つながることが示唆された。

参考文献

- 【1】田辺静一:「エネルギー変換 -パワーエネルギーからエ ネルギーセンサーまで-」,裳華房,(1991),P.107-112.
- [2] H. Inaba, H. Tagawa : Solid State Ionics, 83 (1996), 1-16.
- [3] C. Milliken, S. Guruswamy and A. Khandkar
 - : J. Electrochem. Soc.,146 (1992),872-882.
- [4] S. Carter, A. Selcuk, J. Chater, R. J. Kilner,
 - B. C. H.Steele : Solid State Ionics, 53-56 (1992), 597-605.