新規の多段型 UASB 廃水処理プロセスにおける基質分散供給

(マルチフィ - ド)の有効性の評価

1. **はじめに**

UASB(上昇流嫌気性汚泥床)プロセスは、微 生物の自己集塊化(グラニュ-ル化)を巧みに利 用した高負荷型メタン発酵バイオプロセスであ る。高負荷廃水処理の主体となるグラニュ - ル汚 泥の形成には、適度な上昇流環境および生成バイ オガスによる緩やかな撹拌効果が必要とされて いたため、UASB反応槽底部からの単一フィ - ド (廃水単一供給方式)が主流となっていた。しか しながら、この方式を採用した従来型 UASB プロ セスでは、UASB反応槽下部における局所的な pH 低下(酸敗化)が生起しやすいため、さらなる高 負荷処理にあたっては、酸生成の集中化の回避、 適切なアルカリ度の確保といった対策を講じる 必要がある。さらに、通常の UASB プロセスでは 良好な処理を行なう上で 1.2gCaCO₃/gCOD 以上の アルカリ度が必要とされており、不足分は外部か らのアルカリ剤添加によって補う必要がある。実 規模プラントでのアルカリ度補給は大きな財政 的負担となるため、アルカリ剤使用量を最小限に 抑えるようなプロセスへの転換が望まれている。

本研究では、新規のマルチフィ - ド(廃水分散 供給方式)を導入した多段型 UASB 連続処理実験 により、酸生成分散効果およびアルカリ度要求量 低減(アルカリ使用量削減)効果について検討し た。

2. 実験装置および方法

2-1 対象廃水およびアルカリ剤

清涼飲料廃水(CODcr 濃度:約 700,000mgCOD・ L¹)を供給廃水、5%-苛性ソ-ダ(NaOH)をア ルカリ剤として選択した。清涼飲料廃水は、炭水 化物を主体とする溶解性・易分解性の産業廃水で ある(糖含有率約 80%、Table.1 参照)。なお、廃 水圈土壤環境制御工学研究室 熊谷 祐介 指導教官 原田 秀樹 大橋 晶良

水中の栄養塩類(N および P)および微量元素(Ni、 Co、Fe 等)は不十分であったため、連続処理実験 においては所定濃度で追加補充している。

2-2 パイロット多段型 UASB 廃水処理プロセス

パイロット多段型 UASB プロセスの概要図を Fig.1 に示した。原廃水は、原水槽(有効容積: 0.5m³)および原水混合槽(有効容積:0.2m³)の 2 箇所にて所定濃度まで前段希釈を行なった。さ らに原水混合槽では、栄養塩類の補充、pH 調整 およびプレヒ - ティング操作を施した。多段型 UASB反応槽(水張り実容積: 0.39m³、全高 3.375m、 幅 2.075m)は、階段上に折れ曲がった特徴的な装 置構造を有し、発生するバイオガスを原位置で速 やかに排除する目的で GSS (Gas-solid separator: 三相分離装置)が多段に配置されている。さらに、 多段型 UASB反応槽には基軸方向に3つの流入口 (0m、0.83m、1.20m)が設けられており、タイマ - 制御による廃水分散供給(マルチフィ - ド)が 可能となっている。UASB反応槽からの処理水は、 処理水タンク(有効容積:0.1m³)へと一時的に貯 留し、必要に応じて循環併用運転に供した。反応 槽内の温度は、ウォ-タ-ジャケットの温水循環 により35 に調節した。

* 設定廃水分散供給(マルチフィ - ド)条件の表記 は以下の通りである。

例) 6min/4min/2min : UASB 反応槽基軸方向に 設けられた 3 箇所 (Feed port.1、2、3)の廃水流入 口から、各々6分、4分、2分の条件で供給する。タ イマ - 制御により 3 つの電磁弁が自動開閉し、Feed port.1 から 6 分間供給した後に、次の Feed port.2 か ら 4 分間、さらに次の Feed port.3 から 2 分間供給す る。

Fig.1 Flow diagram of multi-staged UASB process

植種汚泥には、長岡下水処理場からの中温消化 汚泥を用いた。植種時の全汚泥量は 2.69kgMLVSS (6,900mgMLVSS・L⁻¹、VSS/SS⁻¹ = 0.61)、汚泥高 は反応槽全高基準で 1.5m であった。後述のアル カリ剤過剰添加トラブル(運転開始後 50 日目) により、保持汚泥量が著しく減少したため、100 日目に同中温消化汚泥を約 3.5kgMLVSS 追加植種 している(反応槽全汚泥量で約 5kgMLVSS・ reactor⁻¹)。

2-3 プロセス操作条件

UASB連続運転期間を、Run1 および Run2 に大 別した。Run1 においては、単一フィ - ド条件下に おける廃水処理特性および反応槽内物質挙動の 評価を行なった。Run2 では任意のマルチフィ - ド 条件を設定し、最適フィ - ド条件を検討するとと もに、アルカリ度要求量低減効果についての考察 を行なった。

3. 実験結果および考察

3-1 多段型 UASB 廃水処理特性

 Fig.2 に多段型 UASB 廃水処理状況を示した。

 Run1 (単一フィ - ド運転)では、COD 容積負荷

 4kgCOD・m⁻³・day⁻¹(COD 濃度 1,000mgCOD・L⁻¹)

 HRT 6.0hr、流入 pH 7.0 の運転条件でスタ - トア

 ップを行なった。運転開始 99 日目までは、1) 植

Analytical subject		Soft-drink wastewater
pН	-	2.7
CODcr	(mgCOD/L)	
tota	1	744,800
sol		736,000
SS	(mgSS/L)	4,620
Carbohydrate	(mgCOD/L)	
tota	1	678,879
sol		651,681
Protein	(mgCOD/L)	
tota	1	46,400
sol		39,150
Composition	(%)	
Carbohydrate	e	91.1
Protein	n	6.2

Table.1 Characteristics of soft-drink wastewater

種汚泥の低メタン生成活性、および2)運転開始 50 日目のアルカリ過剰添加トラブル (pH メ - タ - 故障)により COD 除去率は 20%前後にとどま った。そこで100日目に同消化汚泥を追加植種し たところ、約20日程度でCOD除去率80%程度ま で処理性能は著しく向上した。その後は、COD 除 去率 80%以上、処理水 VFA 濃度 200mgCOD·L⁻¹ 以下を安定的に許容していることを前提条件と して、段階的に COD 容積負荷を増大させた。COD 容積負荷 10~30kgCOD·m⁻³·day⁻¹の平均 COD 除 去率は約 90%、処理水 VFA 濃度は 80~ 120mgCOD・L⁻¹ 程度と非常に良好で、除去された COD は確実にメタンへと転換されていた(CH4 転換率: 85~90%)。従来型 UASB 反応槽が COD 容積負荷 10~15kgCOD·m⁻³·day⁻¹程度で運転され ていることを考慮すると、本連続実験における多 段型 UASB反応槽は実に2~3 倍程度の高負荷条 件下での運転が可能であった。COD 容積負荷 30kgCOD・m⁻³・day⁻¹ 時におけるメタン生成量は 3,500L·day⁻¹と非常に高く、高負荷処理のみなら ず卓越したメタンガス回収ポテンシャルが実証 された。

しかしながら、COD 容積負荷を 40kgCOD・m⁻³・ day⁻¹ に上昇させたところ(運転開始 199 日目) 処理性能は急激に悪化し(COD除去率 20~30%) 最終的にプロセス破綻を誘引した。処理水中には 約 2,000mgCOD・L⁻¹もの高濃度の VFA が残存し、 処理水 pH は 4.5 程度まで著しく低下した。基軸 方向のプロファイル (Fig.3) によりプロセス破綻 原因を調査したところ、UASB反応槽下部におけ るアルカリ度は完全に消費し尽くされ、メタン生 成の好適 pH 範囲(7.0~7.5)を完全に逸脱してい ることが明らかとなった。特に本実験における清 涼飲料廃水のような炭水化物を主体とする廃水 種は、アルカリ度生成が相対的に低いため、酢酸 経由メタン生成に伴う重炭酸塩は非常に重要な アルカリ度源となる。ひとたびプロセス破綻によ る pH 低下が生起すれば、酢酸資化性メタン生成 細菌の活動は次第に抑制されはじめ、処理状況は 悪化の一途を辿ることになる。Fig.2からも明らか なように、30kgCOD·m⁻³·d⁻¹ 以降にメタン生成細 菌の活性値が低下しはじめ、処理水 VFA 濃度は次 第に増加していることがわかる。このような高負 荷時における局所的な pH 低下の回避にあたって は、二相分離プロセスあるいは UASB 処理水循環 といった適切なアルカリ度充足策を講じる必要 がある。

Run2 初期では、処理の回復を目的として、3 つ のプロセス改善策(アルカリ度改善策)を適用し た。

運転開始 200 日目からは、第1のプロセス回復 策としてのマルチフィ - ド運転を行なった。COD 容積負荷は 40kgCOD・m⁻³・d⁻¹のまま一定とし、マ ルチフィ - ド条件のみを 6min/4min/2min、 8min/4min、5min/5min、30min/20min/10min に設定 した。各条件で一週間程度ずつ運転を行なったも のの、処理は悪化する一方で、アルカリ度の回復 は達成できなかった。なお、この時点のメタン生 成活性は、酢酸単一基質で 0.005gCOD・gVSS⁻¹・d⁻¹、 清涼飲料廃水で 0.007gCOD・gVSS⁻¹・d⁻¹ と、ほぼ植 種汚泥と同程度まで著しく低下していた。

COD 容積負荷 40kgCOD・m⁻³・d⁻¹ (COD 濃度 6,000mgCOD・L⁻¹)では、反応槽底部における酸生 成は概して 3,000mgCaCO₃・L⁻¹ 程度にも達し、こ の中和に要するアルカリ度を確保することは非 常に困難であったため、第2のアルカリ度改善策 として、COD 容積負荷の減少(最終設定負荷 5kgCOD・m⁻³・d⁻¹程度)とアルカリ剤添加量の増

Fig.2 Process performance of UASB reactor

- a) COD-V loading CODs removal
- b) Methane production Methane ratio
- c) Inf-pH Eff-pH NaOH consumption
- d) Eff-alkalinity Eff-VFA acidity
- e) Soft-drink Acetate Butyrate Propionate

Fig.3 Reactor profile on single-feed operation 10kgCOD/m³/d 20kgCOD/m³/d 30kgCOD/m³/d 40kgCOD/m³/d

加(流入 pH 10 以上)を併用した。この手法によ リ、処理状況は若干回復傾向に向かったものの、 高 pH 運転による菌体への阻害影響が確認された ため、運転開始 313 日目以降は、流入 pH の希釈 とアルカリ度の確保を目的として、処理水の一部 を循環させる方法に変更した(循環比 0.5、流入 pH 9.0 程度)。処理水循環併用後は、2 週間程度で COD 容積負荷 20kgCOD・m⁻³・d⁻¹ で COD 除去率 80%まで処理性能は向上し、処理水 pH も 6.0~6.5 程度で安定した。

Run2後期においては、いくつかのマルチフィ -ド条件を設定し、アルカリ削減に向けた最適マル チフィ - ド条件の選定を行なった。詳細は 3.3 を 参照されたい。

3-2 多段化配置 GSS による高濃度生物保持効果

Fig.4 にメタン生成量およびメタン含有率、Fig.5 に上昇線流速の推移を示した。前述の通り、反応 槽からのメタンガス生成量は 30kgCOD・m⁻³・day⁻¹ 時で 3,500L・day⁻¹ (反応槽容積基準で 25kgCOD-CH₄・m⁻³・day⁻¹)と非常に高く、発生バ イオガス中のメタン分圧は 60~70%で推移して いた。一方、反応槽内における上昇線流速は 30kgCOD・m⁻³・day⁻¹時で約2.0m・hr⁻¹と非常に高く、 発生バイオガスに起因する線速(約1.4m・L⁻¹)の 方が流入水起因の線速(約0.6m・L⁻¹)よりも数倍 高い。従来型 UASB プロセスでの高線速運転は、 著しい菌体流出を引き起こすばかりでなく、プロ セス破綻を誘発する危険性をも孕んでいる。Fig.6 に各 COD 容積負荷における反応槽基軸方向にお けるガス生成量の回収状況を示した。

Fig.4 Methane production and methane ratio Methane production methane ratio

Fig.5 Change of superficial loading rate Total velocity liquid velocity Gas velocity

Fig.6 Biogas recovery from each compartments

COD 容積負荷 10~30kgCOD・m⁻³・day⁻¹ における UASB反応槽からのバイオガス回収は、基軸方向 0.65m (Port.1 および Port.2) でほぼ 95%以上が完 了していることがわかる。多段に配置された特徴 的な GSS 構造は、高負荷時の過剰な生成ガスを原 位置にて速やかに放出することにより、上昇線速 の低減および菌体流出の防止(連続実験期間を通 じて流出 VSS 濃度 200mgVSS・L⁻¹以下、デ - 夕省 略)に非常に有効的に作用していることが示され た。

Fig.7 に反応槽基軸方向における保持汚泥濃度 の推移(プロファイル)を示した。5kgCOD・m⁻³・ day⁻¹(運転開始100日目)における汚泥濃度は高 さ方向にほぼ均一で、10,000~20,000mgMLVSS・ L⁻¹程度であった。その後は、COD 容積負荷の上 昇に伴って保持汚泥のグラニュレ・ションが 徐々に進行し、10~40kgCOD・m⁻³・day⁻¹では約 10,000mgMLVSS・L⁻¹程度の割合で汚泥濃度が段 階的に増加している。40kgCOD・m⁻³・day⁻¹(202日 目)においては約60,000mgMLVSS・L⁻¹もの高濃度 汚泥保持が可能となり、UASB反応槽内は完全に 緻密なグラニュ - ル状汚泥で占められていた。

これらの結果より、多段型 UASB プロセスにお ける多段化 GSS 構造は、上昇線流速の低減化によ り、沈降性に優れるグラニュ - ル汚泥を高濃度か つ高密度に蓄積保持することが可能であること が立証された。UASB反応槽への高濃度生物保持

Fig.7 Retained biomass conc. (MLVSS) in UASB reactor5kgCOD/m³/d10kgCOD/m³/d20kgCOD/m³/d30kgCOD/m³/d40kgCOD/m³/d

は高負荷処理を行なう上で非常に重要なポイン トであり、本連続実験においても多段化配置 GSS の卓越した汚泥抑留効果により、COD 容積負荷 30kgCOD・m⁻³・day⁻¹ 程度の高負荷運転が可能であ った。

3-3 マルチフィ - ドによるアルカリ度削減効果

プロセスの回復後、供給方式の違いによる酸生 成分散効果およびアルカリ度要求量の削減効果 を検討した(Run2後期)。なお、COD 容積負荷は 20kgCOD・m⁻³・d⁻¹(COD 濃度 4,000mgCOD・L⁻¹、 HRT 4.8hr)で一定とし、供給条件のみを変更した。

Fig.8 に、単一フィ - ド運転時およびマルチフィ - ド運転時における UASB反応槽基軸方向の酸度 - アルカリ度挙動を示した。単一フィ - ドにおい ては、前述の通り UASB 反応槽底部の局所的な VFA 生成により、アルカリ度は 50mgCaCO₃・L⁻¹ 程度まで著しく低下している。

一方、マルチフィ - ド運転時(反応槽下部より 6min/4min/2min)においては、廃水分散供給によ リVFA化は基軸方向2.0m程度まで適度に分散化 しており、局所的なアルカリ度消費も緩和されて いた(基軸方向0.5mまでで150mgCaCO₃・L⁻¹程度)。 本区間においてはプロセス破綻の影響が依然と して残ったままであったため(プロピオン酸分解 の律速)、相対するアルカリ度は若干低めになっ ている。

Fig.8 Acidity and alkalinity performance on Single and multi-feed mode operation

Single-feed Multi-feed (6.4.2)

酸度(VFA および H₂CO₃)の中和のためのアル カリ度要求量は、以下の式より量論的に算出する ことができる。

 $R-COOH + HCO_3 - R-COO + H_2O + CO_2$

 H_2CO_3 H⁺ + HCO₃⁻ および [H₂CO₃] = K_HP_{CO2}

Fig.9 に、UASB反応槽底部におけるアルカリ度 要求量を示した。なお、マルチフィ - ドにおける アルカリ度要求量は基軸方向の VFA 分散を考慮 して、1.0m までの積分値より求めた。単一フィ -ドにおいては、反応槽底部の局所的な VFA 中和に 900mgCaCO₃・L⁻¹程度のアルカリ度が必要となっ ているのに対して、マルチフィ - ドにおいては 520mgCaCO₃・L⁻¹程度まで減少している。すなわ ち、同アルカリ剤添加条件下において、約 40%程 度のアルカリ度要求量の削減が可能であった。

さらに、マルチフィ - ドによる分散効果は、 従来型UASB反応槽にみられるようなアルカリ度 不足による制約を回避し、さらなる高負荷処理へ の足掛かりとなることが示唆された。

4. まとめ

本研究で得られた知見をまとめる。

36日本
 <

Fig.9 Reduction of alkalinity requirement by multi-feed mode operation

90%以上、メタン転換率 85%程度の高負荷処理 および高効率メタン回収が可能であった。これ は、従来型 UASBと比較しても 2~3 倍の処理 に相当し、多段化 GSS の有効性が立証された。

- プロセス破綻時におけるアルカリ度改善に 3 つの対策を講じたが、処理水の一部循環が最 も有効であった。
- マルチフィ・ド(廃水分散供給)により、ア ルカリ度要求量として約40%の削減が可能で あった。本ユニットは、UASB反応槽底部に おけるアルカリ度の確保に非常に有効であり、 さらなる高負荷処理の可能性が示唆された。

5. 参考文献

- 本間康弘、田中俊博、安達晋、磯崎裕一(2002): 高負荷 EGSB での有機性廃水処理、エバラ時報、 No. 194
- T. Tagawa, H. Takahashi, Y. Sekiguchi, A. Ohashi and H. Harada (2001): Pilot Plant Study on Anaerobic Treatment of a Lipid- and Protein-rich Food Industrial Wastewater by a Thermophilic Multi-staged UASB Reactor, 9th World Congress on Anaerobic Digestion, Antwerpen (in press of Wat. Sci.)